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Réwnania w dziedzinie zespolonej

Teoria

Definicja 1 Argumentem liczby zespolonegj
z=x+iy#,

gdzie z, y € R nazywamy kazda liczbe ¢ £ I spetniajaca uktad rownan:

cos @ = 1
sing = L.

Definicja 2 e Argumentem gltownym liczby zespolone] = # 0 nazywamy argument ¢ te] liczby
spetniajacy nierdwnosc:
0< @< 2m. I;_fd-elw
o Argument gtéwny liczby zespolone] z oznaczamy Arg z. =
240

e Kazdy argument ¢ liczby zespolone] z 7 () ma postac:

w =Argz + 2kn, gdzie k € Z.
Definicja 3 Kazda liczbe zespolona rdzna od zera mozna przedstawi¢ w postaci:
z=|z | (cosp +ising),
gdzie o jest argumentem gtownym liczby =z.
Postac te nazywamy postacia trygonometryczng liczby zespolonej.
Definicia 4 (Pierwiastek = liczhby zespolonej) Pierwiastkiem stopnia n € I z liczby zespolone] =z

nazywamy kazda liczbe zespolona w spetniajaca rownosé:

R | R
W — .

Twierdzenie 1 MNiech n € M. Kazda liczba zespolona
z =| z | (cosp + isiny)

rozna od zera ma doktadnie n pierwiastkéw stopnia n postaci:

dlak=0,1,....n—1.
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Przyktady
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